Common Reflection Surface theory and worldwide data examples

Common Reflection Surface (CRS) processing

Data driven approach

- stacking parameters are determined from data
- local parameter search at each point of stack
- selection of parameter by coherency measures along stacking surfaces

$$t^{2}(h) = t_{0}^{2} + \frac{4h^{2}}{v_{NMO}^{2}}$$

1 Parameter : V_{NMO}

NIP = normal incident point

NIP Wave

Normal Wave (or N Wave)

NMO versus CRS

NMO Traveltime

NMO Model

CRS Model

CRS Traveltime

CRS midpoint aperture

CRS midpoint aperture

Fit of stacking surfaces / reflection time surfaces

(Hubral et al. 1999)

Expected advantages of CRS stacking

- Improved signal-to-noise ratio
- Improved imaging of dipping reflections
- Improved imaging in low fold zones
- More detailed velocity model information

CRS in Complex Tectonic Settings

Alps/Germany Andes Foreland/Bolivia Carpathian Mountains/ Poland Caucasus Mountains/ Russia Kurdistan/ Irak Himalaya Foreland/ India Pyrenees/ Spain Rockies/ USA Zagros Mountains/ Iran

Colombia

CMP

500

000

500

TIME 2,000

2,500

8

Colombia 2D

Colombia 2D

Northern Calcareous Alps

Client Time Migration with conventional processing

Northern Calcareous Alps

TEEC Time Migration with CRS processing

CRS on marine data

North Sea Gulf of Mexico Persian Gulf South China Sea Carribean Sea Barent Sea Black Sea Offshore West Africa Offshore Nova Scotia Brasil

Land/TZ/offshore

Sources:

Explosives in black

Airguns in red

Receiver:

Receiver in brown

CMP gathers before CRS processing

CRS gathers

PreSTM using CMP gathers

PreSTM using CRS gather

Timeslice 1032 ms of PreSTM

TZ 1032 ms of CRS PreSTM

North Sea merge of 4 different acquisition geometries

Inline of CMP stack

Inline of vintage PreSTM result

Inline of CRS PreSTM

Please contact us for further questions or any comments at

info@teec.de

